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Fetal alcohol spectrum disorder (FASD) is characterized by a broad range of behavioral and
cognitive deficits that impact the long-term quality of life for affected individuals. However,
the underlying changes in brain structure and function associated with these cognitive
impairments are not well-understood. Previous studies identified deficits in behavioral
performance of prosaccade tasks in children with FASD. In this study, we investigated
group differences in gamma oscillations during performance of a prosaccade task. We
collected magnetoencephalography (MEG) data from 15 adolescents with FASD and 20
age-matched healthy controls (HC) with a mean age of 15.9 ± 0.4 years during performance
of a prosaccade task. Eye movement was recorded and synchronized to the MEG data
using an MEG compatible eye-tracker. The MEG data were analyzed relative to the onset
of the visual saccade. Time-frequency analysis was performed using Fieldtrip with a
focus on group differences in gamma-band oscillations. Following left target presentation,
we identified four clusters over right frontal, right parietal, and left temporal/occipital
cortex, with significantly different gamma-band (30–50 Hz) power between FASD and HC.
Furthermore, visual M100 latencies described in Coffman et al. (2012) corresponded with
increased gamma power over right central cortex in FASD only. Gamma-band differences
were not identified for stimulus-averaged responses implying that these gamma-band
differences were related to differences in saccade network functioning. These differences
in gamma-band power may provide indications of atypical development of cortical networks
in individuals with FASD.
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INTRODUCTION
Basic animal research and human behavioral and neuroimaging
studies have contributed substantially to our understanding of the
cortical networks involved in visual saccades (Goldberg et al., 2002;
Pierrot-Deseilligny et al., 2002; Zhang and Barash, 2004; McDow-
ell et al., 2008). Based on these and other studies, we now know
that a complex network of cortical and subcortical regions interact
to initiate saccades. These regions include subcortical structures
such as superior colliculus, caudate nucleus of the striatum, thala-
mic nuclei, and cerebellum. The cortical network includes primary
visual cortex, parietal eye fields, putatively located in medial intra-
parietal sulcus in humans, and supplementary and frontal eye
fields (SEF and FEF; Clementz et al., 2001; Brown et al., 2006;
Manoach et al., 2007; McDowell et al., 2008). These areas are dif-
ferentially activated based on the nature of the saccade experiment:
whether it involves prosaccades, including exogenous initiation of
the visual saccade, or anti-saccades, where the response to the
exogenous stimulus must be inhibited and an endogenous initi-
ation of the saccade away from the target must be accomplished.
Anti-saccade tasks invoke activation of additional executive con-
trol networks to inhibit the exogenous saccadic response. Further
manipulations of the relative timing of the fixation and target
stimuli can facilitate saccadic reaction times [SRT; e.g., providing

a “gap” between the offset of the fixation and onset of the tar-
get stimulus – (Taylor et al., 1999; Dafoe et al., 2007)] and this
additional time available for motor planning is associated with
increased activity in FEF as demonstrated by functional magnetic
resonance imaging (fMRI; Connolly et al., 2005). The exogenously
initiated prosaccade task invokes the fronto-parietal saccadic net-
work (e.g., Brown et al., 2006) and is less cognitively demanding
than endogenous saccade tasks allowing investigators to assess the
viability of the fronto-parietal saccade network in children.

Deficits in saccadic processing have been noted in multiple clin-
ical populations including schizophrenia, attention deficit hyper-
activity disorder and fetal alcohol spectrum disorders (FASDs;
McDowell and Clementz, 2001; Manoach et al., 2002; Munoz et al.,
2003; Feifel et al., 2004; Green et al., 2007). It has been proposed
that visual saccades may provide a means to probe components
of the cortical network underlying executive function and may
provide an objective measure of impaired neural circuitry in these
disorders of executive functioning (Manoach et al., 2002; Green
et al., 2007). Visual prosaccade tasks provide an advantage over
standard neuropsychological tests because a prosaccade task offers
a measure of stimulus-initiated reflexive responses and hence is
less susceptible to socio-cultural influences (Klein and Berg, 2001).
This allows assessment of a broad spectrum of individuals with

Frontiers in Human Neuroscience www.frontiersin.org December 2013 | Volume 7 | Article 900 | 1

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/about
http://www.frontiersin.org/Journal/10.3389/fnhum.2013.00900/abstract
http://www.frontiersin.org/people/u/6151
http://www.frontiersin.org/people/u/100078
http://community.frontiersin.org/people/DavidStone/66900
http://www.frontiersin.org/people/u/17885
mailto:jstephen@mrn.org
http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


“fnhum-07-00900” — 2013/12/24 — 15:19 — page 2 — #2

Stephen et al. Altered prosaccade gamma activity in FASD

varying age, ability levels, and cultural backgrounds. Furthermore,
there are numerous studies providing evidence of both gross and
fine motor deficits in children with FASD (Bay and Kesmodel,
2010; Mattson et al., 2011; Simmons et al., 2012; Valenzuela et al.,
2012). Therefore, a prosaccade task allows one to assess basic visual
processing, visuo-motor integration abilities as well as deficits in
motor execution in children with FASD.

Reynolds and colleagues (Green et al., 2007, 2009, 2013;
Paolozza et al., 2013) identified deficits in both prosaccade and
anti-saccade tasks in children with FASD relative to age-matched
controls. These results provide evidence of delayed SRT (Green
et al., 2007), differences in measures of fractional anisotropy
within white matter tracts that correlate with SRT (Green et al.,
2013), and larger variability in saccade accuracy in children with
FASD relative to healthy controls (HC; Paolozza et al., 2013). Fur-
thermore, a study in infant rats and mice demonstrated that the
entire visual pathway, including retinal ganglion cells, subcortical
structures and neurons in the visual cortex, is sensitive to ethanol
with increased cell death following ethanol exposure (Tenkova
et al., 2003). Our research group also identified a systematic delay
in the onset of visual cortex activation (M100) in FASD relative to
HC in response to both fixation (central) and target (peripheral)
stimuli in a visual prosaccade task using magnetoencephalography
(MEG) (Coffman et al., 2012). This is consistent with previous
studies showing alterations in sensory processing in infants and
children with FASD (auditory, somatosensory, and visual) in both
animal and human studies (Medina et al., 2005; Church et al., 2012;
Stephen et al., 2012).

Gamma oscillations in response to exogenous stimuli have been
described in both animal and human studies (Tallon-Baudry et al.,
1996; Uhlhaas and Singer, 2006). Since these initial studies were
reported, it has become clear that gamma oscillations are integrally
involved in the processing of both sensory and cognitive stim-
uli. In visual studies, gamma oscillations are implicated in feature
binding across stimulus parameters, whereas cognitive studies sug-
gest a role in working memory and higher cognitive functioning
(Uhlhaas and Singer, 2006). However, the role of gamma oscilla-
tions in saccade processing is not well-understood (Van Der Werf
et al., 2008, 2013). Based on animal models of FASD, prenatal
alcohol exposure inhibits long-term potentiation (LTP) of GABAA

receptor-mediated postsynaptic potentials (Sanderson et al., 2009;
Zucca and Valenzuela, 2010). Furthermore, the inhibitory signal
provided by GABAA modulates cortical oscillations (Hall et al.,
2011). Based on these findings, we hypothesized that adoles-
cents with FASD would show altered gamma modulations during
performance of a prosaccade task. To test this hypothesis, we per-
formed time-frequency analysis on the MEG dataset presented in
Coffman et al. (2012). Our previous study focused on stimulus-
averaged responses and did not characterize the broader cortical
network associated with saccade execution; therefore, the current
study focuses on the saccade-averaged response to understand the
role of gamma oscillations in performing the saccade task.

MATERIALS AND METHODS
PARTICIPANTS
Forty-one adolescent participants (aged 12–21 years) were ini-
tially recruited. Participants or their parents (when children were

Table 1 | Participant demographics: mean (standard deviation).

HC (N = 20) FASD (N = 15)

Age (years) 16.3 (2.1) 15.3 (2.1)

IQ 108 (15)* 80 (15)*

Male/female (%male) 12/8 (60%) 10/5 (67%)

FASD sub diagnosis – 8 FAS, 7 ARND

*p < 0.001.

under 18 years of age) completed the informed consent procedure
prior to study participation in accordance with the Declaration
of Helsinki. In this study we report on data from 35 adolescents
from whom we obtained good-quality MEG data and success-
ful prosaccade participation. Demographic characteristics of these
participants are presented in Table 1.

Healthy control participants were included in the study if they
attained an IQ score >70 and did not have any previous reports
of neurodevelopmental disorders or known prenatal exposure to
alcohol or other substances. Children were diagnosed as having
fetal alcohol syndrome, partial fetal alcohol syndrome, or alcohol-
related neurodevelopmental disorder using modified Institute of
Medicine Criteria (Stratton et al., 1996) by a multidisciplinary
team at the University of New Mexico Fetal Alcohol Diagnos-
tic and Evaluation clinic. This clinical team was comprised of
a developmental pediatrician, clinical neuropsychologist, and a
child clinical psychologist. All children in the FASD group had con-
firmed prenatal alcohol exposure, which was established through
several methods: (1) direct confirmation through the maternal
interview; (2) eyewitness reports of drinking during pregnancy;
(3) legal records confirming consumption of alcohol during preg-
nancy (e.g., DWI arrest); or (4) evidence of prenatal alcohol
consumption in medical records. All participants completed the
Wechsler Abbreviated Scale of Intelligence (WASI) to assess IQ
and the Cambridge Gambling Task (CGT), from the Cambridge
Neuropsychological Test Automated Battery (CANTAB), to assess
executive function.

PROCEDURES
Participants performed a prosaccade task (see Figure 1) described
previously in Coffman et al. (2012). Briefly, participants sat in
a reclining chair with their head in the MEG helmet. A back-
projection screen was placed at a distance of 1 m from their nasion.
The MEG-compatible SR Research Eyelink 1000 eye-tracker sys-
tem was used to track eye-movement during the task. White visual
stimuli were presented on a gray background using a Panasonic
PT-D7700 DLP projector with a visual delay of 35.1 ± 0.2 ms. At
the beginning of each trial, a small fixation cross was presented in
central visual field. Participants were instructed to maintain fix-
ation during this phase of the trial. Next, the fixation cross was
replaced by a small white fixation circle (1◦diameter, 50 cd/m2).
This stimulus allowed the participant to prepare for the onset
of the peripheral stimulus. To reduce anticipatory saccades, the
peripheral stimulus (white circle – 1◦diameter, 50 cd/m2) was
presented after a variable delay (800–1100 ms). The peripheral
stimulus was presented for 800 ms in either the left or right visual
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FIGURE 1 | Prosaccade paradigm. Participants were presented with a
fixation cross that was replaced by a fixation circle followed by either a left
or right peripheral visual target. Two trials are displayed with a left followed
by a right target. The order of the location of peripheral targets was
randomized across trials to minimize anticipatory saccades.

field at 15◦ eccentricity along the horizontal meridian. Left and
right peripheral target stimuli were presented randomly with equal
probability over 200 trials, providing 100 trials/condition. Partic-
ipants were instructed to focus their gaze on the centrally and
peripherally presented stimuli as quickly and accurately as pos-
sible. Once the peripheral target disappeared, the fixation cross
reappeared to draw the participant’s gaze back to central fixation.

MEG data collection was performed using the Elekta Neuromag
306 channel Vectorview located within a magnetically shielded
room. Prior to MEG data collection, standard bipolar electro-
cardiogram (ECG) and electrooculogram (EOG, horizontal and
vertical) electrodes were placed to monitor heart rate, eye blinks,
and eye movement for data quality purposes. ECG electrodes were
placed bilaterally on left and right clavicles, and EOG electrodes
were placed above and below the left eye (vertical EOG) and at the
outer canthus of each eye (horizontal EOG). Four head position
indicator (HPI) coils were placed around the hairline ensuring
that the placement did not form a symmetric box pattern. All
electrodes and coils were secured with tape. The position of the
HPI coils and three fiducial points (left and right preauricular
points and nasion) were recorded with the Polhemus 3D tracking
device. Once the participant was comfortably seated in the MEG,
the screen was positioned and the eye-tracker system was adjusted
for the participant (infrared light source location and camera posi-
tion were optimized to obtain good-quality pupil representation
and corneal reflection). This was followed by a 9-point eye-tracker
calibration sequence. Calibration was repeated until average eye
location error between calibration and validation tests was less
than 1◦ and maximum location error was less than 2◦ across all
positions. Participants were given short (2–4 s) breaks every 10
trials throughout data collection to check calibration and to allow
participants to rest their eyes. MEG data were collected at 1000 Hz

with an online 0.01 high-pass filter and a 300 Hz anti-aliasing fil-
ter with head position monitored continuously throughout data
collection.

ANALYSIS
MEG data were preprocessed using Maxfilter. A default head
position (default head center was based on the average head
position of all 35 participants with good MEG data) was used
along with the maxmove option of Maxfilter. This allowed for
direct within-channel comparison of signals across participants
and groups without concern of differences in head position within
the MEG helmet during data collection. Trials were eliminated
from further analysis in which eye position was not focused on the
Cartesian coordinates of the central fixation point at the begin-
ning of the saccade and the target at the end of the saccade, or
direction of the first saccade greater than 30◦/s following presen-
tation of the peripheral visual stimulus was incorrect, as identified
using the eye-tracker. That is, the participant was required to fix-
ate on the central fixation point at the onset of the peripheral
visual stimulus, saccade in the correct direction to the periph-
eral target, and reach the peripheral stimulus location following
the saccade for each trial to be included in the time-frequency
analysis.

Once preprocessing of the MEG data was complete, time-
frequency analysis was performed to identify the temporal and
spectral window of group differences in the gamma-band. Time-
frequency analysis was performed using the tools available in the
Fieldtrip toolbox (Oostenveld et al., 2011) and custom Matlab
scripts. Morlet wavelets (width = 7 cycles) were used to develop
time-frequency maps of activity across all trials within condition
(fixation, left target, and right target). The time window of (−1000,
0) ms for each trial was analyzed for the left and right target, where
0 was the onset of the saccadic eye movement, as determined by
the eye-tracker, and the time before zero denotes activity that ini-
tiates the saccadic response. The average spectral power for each
frequency from the baseline time interval of (−500, −400) was
removed from the rest of the time window. This time interval
was prior to the onset of the visual stimulus for all participants,
based on the longest SRT. The time-frequency maps were calcu-
lated for each trial individually and then averaged to provide a
time-frequency map for each condition and participant at each
sensor location. Only the time-frequency maps from the planar
gradiometers are described further because planar gradiometers
provide a measure of local brain activity since the maximal sig-
nal occurs directly over the source (Hamalainen et al., 1993).
Furthermore, to facilitate interpretation, we combined the sig-
nals from the paired perpendicular planar gradiometers using the
ft_combineplanar function in Fieldtrip. This reduced the number
of sensors from 306 to 102 for further analysis.

To determine if differences in visual gamma activity influenced
the saccadic network, we also performed time-frequency analy-
sis on the stimulus-locked response for the left and right target
conditions. The time (−100, 500 ms) and frequency (30–50 Hz)
windows were analyzed with Morlet wavelets with 0 denoting
the onset of the peripheral visual stimulus. The baseline time
interval of (−100, 0 ms) was used for baseline correction of the
time/frequency power in this analysis.
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Table 2 | Behavioral results prosaccade task: mean (standard deviation).

HC (N = 20) FASD (N = 15) p-Value Cohen’s d

Saccadic Reaction Times (SRT) (ms) 246 (19.5) 255 (27.8) 0.22 0.41

Right target SRT (ms) 243 (18.8) 253 (26.2) 0.19 0.45

Left target SRT (ms) 249 (25.8) 259 (31.9) 0.33 0.34

Percent correct 0.96 (0.02) 0.95 (0.04) 0.16 0.52

Saccade amplitude 12.4 (0.8) 12.0 (1.5) 0.35 0.32

Saccade peak velocity 335 (82.7) 317 (103.6) 0.57 0.20

Once the time-frequency analysis was complete, we performed
group comparisons using a two-stage approach to account for
multiple comparisons as recommended by Fieldtrip develop-
ers (Maris and Oostenveld, 2007). The first stage identified
time-frequency windows for which significant differences were
identified by group. The time-frequency windows (contiguous
regions within the 30–50 Hz range) within the (−400, 0) ms time
window were compared statistically between groups for each chan-
nel. We chose an alpha (α) of 0.01 for each time-frequency point
and required that at least 10 contiguous time-frequency points
within the map reached the 0.01 significance threshold.

The second stage employed a permutation test for each time-
frequency cluster identified in stage 1. The permutation analysis
was performed within the clusters that were identified in the first
stage. The participants were randomly reassigned group mem-
bership while maintaining the same percentage of HC and FASD
participants. T-tests were applied to the identified clusters using
the randomly reassigned group memberships. Reassignment was
performed 200 times for each cluster and the absolute values of
the t-statistic were calculated and summed across the cluster. If the
t-statistics exceeded the summed absolute value from the original
cluster in more than 10 permutations (5% threshold), the clus-
ter was rejected. Regional group differences were identified when
overlap of the time-frequency window of the significant clusters
were identified in at least two adjacent channels.

Once significant group differences were identified and classi-
fied by regional cluster, the mean amplitude of the regional cluster,
shared between sensors, was obtained for each participant to allow
for comparisons of cluster gamma power with other behavioral
measures. These comparisons were performed using Spearman’s
correlation. Significance level was adjusted using Bonferroni cor-
rections to account for the number of correlations performed.
Finally, stepwise regression analysis was performed to test whether
the visual latencies obtained in Coffman et al. (2012) predicted
mean gamma power in any of the regional clusters.

RESULTS
Of the 41 participants who were initially recruited, we were able
to successfully track eye-movements in 35 of those individuals (20
HC and 15 FASD). As stated, trials were rejected for incorrect
saccades or lack of compliance to the initial fixation point. On
average there were 75 ± 3 trials per condition. There was a signif-
icant difference in the number of trials by group (p = 0.033), but
this difference was not significant for left target alone (p > 0.05),

FIGURE 2 | Schematic of the significant clusters with respect to the

MEG sensor array. The sensor array is flattened and presented from a
top-down view. Significant clusters are circled in black, and sensors within
the clusters are colored. The significant clusters each included three
channels.

which is the focus of our gamma frequency analysis. The mean
age of the participants was not significantly different by group
(p > 0.1). However, as expected, the FASD (IQ = 80) participants
had a significantly lower IQ than HC (IQ = 108) participants
(p < 0.01).

There were no significant differences in eye-tracking ability by
group. The SRT and other saccade parameters are provided in
Table 2 along with p-values and effect sizes.

After permutation testing of the gamma-band clusters of the
time-frequency maps for left and right targets, we only identified
clusters that differed significantly by group in the left target con-
dition in the saccade-averaged data. Four clusters were identified
(location of these clusters relative to the sensor array is shown in
Figure 2). Each cluster included three adjacent channels. Clus-
ter 1 is located over the left occipital/temporal region. During
the same data collection session, we also obtained somatosensory
responses from a tactile stimulus. The initial somatosensory peak
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was localized in the channels in the vicinity of clusters 2 and 3, with
cluster 2 focused slightly anterior to the somatosensory response
and cluster 3 medial to the somatosensory response. This provides
sufficient evidence that clusters 2 and 3 are located anterior to sen-
sorimotor cortex, in the vicinity of FEF, and that cluster 4 is located
over posterior parietal cortex. The time-frequency map from a rep-
resentative channel for each cluster is presented in Figure 3. Finally,
the mean power across the time-frequency windows that was iden-
tified to be significantly different by group is shown in Figure 4.
No significant differences in gamma-band activity were identified
for the stimulus-locked time-frequency analysis for either left or
right target stimuli.

We performed correlations between the mean gamma cluster
power and three measures: WASI IQ, prosaccade SRT, and CGT
Impulsivity index (CGT group differences will be reported in a
subsequent manuscript). None of these correlations reached statis-
tical significance with Bonferroni correction. Finally, the results of
the regression analyses to test whether the visual latencies obtained
in Coffman et al. (2012) predicted gamma power in any of the four
clusters are shown in Table 3. Target M100 latency positively pre-
dicted gamma amplitude in cluster 3 (located over right central
cortex) in FASD only. There were no associations between gamma
power and M100 latencies in HC.

DISCUSSION
In summary, we identified group differences in gamma power in
four time/frequency clusters located over different cortical regions
in response to left target stimuli only. Furthermore, no differences
in gamma-band power were identified for the stimulus-locked
averages. These results indicate a hemispheric difference in sac-
cadic processing in adolescents with FASD. Changes in gamma
activity were not directly correlated with SRT; yet mean gamma
amplitude of cluster 3, located over medial central regions con-
sistent with SEF, was positively predicted by M100 latency to the
peripheral target stimulus in FASD individuals only. These results
provide evidence of altered gamma-band activity during saccade
performance in FASD, a finding consistent with alterations in
GABAA in animal models of FASD.

As reported in our previous paper (Coffman et al., 2012), SRTs
were not significantly different by group in this cohort. This dif-
fers from the previous results of Green et al. (2007), who reported
group differences between children with FASD relative to HC.
However, a more recent study (Paolozza et al., 2013) by the same
group reported no significant difference in SRT in a different
cohort of children with FASD. Despite the lack of difference in
SRT, they confirmed that saccadic processing was still altered with
reduced accuracy in saccade performance in children with FASD
relative to age-matched HC. These differences across studies may
represent variations in alcohol exposure patterns during the pre-
natal period within the FASD groups. Interestingly, gamma-band
power did not correlate with SRT, yet gamma-band power in the
medial FEF location (cluster 3) was positively predicted by M100
latency of the target stimulus in the FASD group only. In light of the
early M100 deficits (Coffman et al., 2012), this increased gamma
power indicates over-activation of gamma oscillations that may
facilitate the saccadic response time. The mean M100 latency dif-
ference of 26 ms (Coffman et al., 2012) decreased to a mean SRT

difference by group of 10 ms (Table 2). However, it is important
to note that a significant correlation between M100 latency and
SRT across groups was noted by Coffman et al. (2012); therefore
increased gamma does not fully compensate for these early visual
deficits. Furthermore, our analysis of the gamma-band power to
the stimulus-locked response confirms that simple sensory differ-
ences are not driving the differences in gamma-band power in the
saccadic response-locked activity. Additional studies are needed
to further understand the link between stimulus-locked versus
response-locked activity during saccade tasks.

The lack of a direct association between SRT and gamma-band
activity indicates that performance of the visual saccade cannot
be fully explained by gamma-band activity. A direct association
between a behavioral outcome measure (e.g., SRT) and localized
brain function would allow us to more directly understand the role
of specific cortical activity. However, this association would more
likely be identified if the analyses were performed on a trial-by-trial
basis to allow us to view the variation in cortical activity that related
to the same variation in individual trial SRTs. Yet, non-invasive
methods do not provide a sufficient signal-to-noise ratio to per-
form this type of analysis for gamma-band oscillations. Recent
results indicate that cross-frequency coupling links local with dis-
tributed activity and may explain the increased synchronization
of gamma and concurrent desynchronization of alpha in poste-
rior parietal cortex (Jensen and Colgin, 2007; Canolty and Knight,
2010). A broader view linking stimulus-locked and response-
locked oscillatory activity may provide additional insights into
how the brain performs visual saccades. Despite the lack of asso-
ciation between cortical activity and SRT, the reported differences
in gamma power may provide a sensitive marker of prenatal alco-
hol exposure, independent of behavioral differences. The increase
in gamma power in cluster 3 (right central – SEF) may repre-
sent compensatory activity, as increases in gamma-band power
over contralateral parietal cortex corresponded to the planned
saccade location identified by Van Der Werf et al. (2008). Despite
this consistency in parietal activation, it should be noted that our
response-locked results differ from the stimulus-locked increases in
gamma power reported by Van Der Werf.

The locations of significant group differences are consistent
with the prosaccade cortical network identified in previous sac-
cade studies (Clementz et al., 2001; Pierrot-Deseilligny et al., 2002;
Brown et al., 2006; Dyckman et al., 2007; McDowell et al., 2008)
including occipital cortex, parietal cortex, and SEF and FEF. Fur-
thermore, previous studies determined that activation in these
regions is larger in the hemisphere contralateral to the target loca-
tion (McDowell et al., 2005; Van Der Werf et al., 2008). Therefore,
left target stimuli should preferentially activate regions in right
hemisphere. This preference does not preclude activation of bilat-
eral homologous regions, but the contralateral bias may provide
a stronger signal-to-noise ratio that facilitates identification of
group differences. The left occipital/temporal cluster (cluster 1)
is not widely discussed as being a part of the saccade network,
however, similar regions of activation were identified in a com-
bined MEG/EEG prosaccade study (McDowell et al., 2005). Based
on the location of cluster 2 relative to the somatosensory response,
we propose that the differences in gamma-band power originate in
right FEF. Although cluster 3 is immediately adjacent to cluster 2,
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FIGURE 3 |Time-frequency plots. The mean time-frequency plots for HC and FASD are shown from one representative channel from each of the four clusters.
The time-frequency window with significant group differences in power is outlined by the white box. The cluster numbering is consistent with the locations
shown in Figure 2.
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FIGURE 4 | Mean gamma power by cluster and group. The mean power by group of the time-frequency window shown in Figure 3 is displayed. Error bars
denote standard error of the mean.

Table 3 | Linear regression of M100 latencies and mean cluster gamma

amplitude.

Regressands Regressors β Partial

correlation

R2 p-Value

Cluster 1 None

Cluster 2 None

Cluster 3 Target M100

latency

0.621 0.44 0.38 0.024*

Cluster 4 None

*p < 0.025 is significant accounting for testing across two groups.

the time-frequency windows do not overlap. The medial location
of cluster 3 may denote supplementary eye field activity; however,
other studies have reported both a medial and lateral region of FEF
that are both activated by saccade tasks (McDowell et al., 2008).
Employing source analysis of the time-frequency maps may help
elucidate these adjacent, yet complementary group differences.
Finally cluster 4 is located over parietal cortex, consistent with the
intraparietal sulcus location of putative parietal eye fields.

Studies demonstrating deficits in right hemisphere connectivity
in FASD may explain why group differences were found for left tar-
get but not right target stimuli. In addition to changes in the corpus
callosum, Green et al. (2013) identified reduced FA in right inferior
longitudinal fasciculus in FASD relative to HC. As an exploratory
analysis, we changed the α from 0.01 to 0.05 in the stage 1 process-
ing of the time-frequency maps for the right target to determine
if differences were present with less stringent significance criteria.
Two clusters remained significant after permutation testing and
were measured over homologous left hemisphere regions as those
identified in the left target condition. This provides evidence of
consistent contralateral activation during a prosaccade task, but
at the same time emphasizes that the right hemisphere effects are
stronger than left hemisphere differences.

Although few studies have characterized gamma-band activ-
ity during saccade tasks, two previous MEG studies (Van Der

Werf et al., 2008, 2013) examined alpha- and gamma-band activity
concurrently in parietal cortex during the delay interval between
the presentation of a peripheral stimulus and prior to a delayed
saccade. Consistent with our current results gamma synchroniza-
tion in parietal cortex was observed contralateral to the planned
saccade. Van Der Werf et al. (2013) also determined that alpha
desynchronization occurred in contralateral parietal cortex and
was correlated with SRT. Interestingly, in the current results pari-
etal gamma-band activity was decreased in FASD relative to HC,
which may indicate impaired motor planning in FASD. How-
ever, it must be noted that the Van Der Werf study analyzed
stimulus-locked rather than saccade-locked cortical responses.
The consistency in parietal location may indicate that parietal cor-
tex is involved in translation from stimulus-evoked responses to
saccade-locked responses, but this cannot be directly tested using
non-invasive methods. The delayed saccade design employed by
Van Der Werf and colleagues may introduce additional frontal
activations required to suppress the immediate saccade to the
target stimulus, but Clementz et al. (2001) commented that the
motor initiation network is consistent across simple (no-delay)
and endogenously initiated (delay task) saccades. Our study
which employed an experimental design to facilitate translation
to younger children provides further evidence of the consistency
of the nodes of the saccade network by identifying differences over
regions widely reported in the saccade literature.

Based on animal studies (e.g., Zucca and Valenzuela, 2010), the
excitatory/inhibitory balance in FASD individuals may be altered.
These alterations may be manifested here as differences in gamma-
band power in FASD relative to HC. Alterations in gamma-band
power have been reported in other clinical disorders, including
schizophrenia (Uhlhaas and Singer, 2006) and may be related to
regional differences in GABAAand altered inhibitory/excitatory
ratios in neuropsychiatric disorders.

CONCLUSION
This study provides an initial description of gamma-band differ-
ences between FASD and HC adolescents elicited by a prosaccade
task. The deficits in right hemisphere are consistent with studies
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of other patient populations showing right hemisphere deficits in
saccade tasks. The relationship between visual M100 latency and
gamma power over right frontal regions may provide additional
insights into the link between stimulus- and response-locked activ-
ity. Finally, this MEG measure provides higher sensitivity to group
differences than behavioral SRTs alone and may be a useful marker
of prenatal alcohol exposure in adolescents.
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