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Abstract: Algorithms that are capable of capturing subject-specific abnormalities (SSA) in neuroimaging
data have long been an area of focus for diverse neuropsychiatric conditions such as multiple sclerosis,
schizophrenia, and traumatic brain injury. Several algorithms have been proposed that define SSA in
patients (i.e., comparison group) relative to image intensity levels derived from healthy controls (HC) (i.e.,
reference group) based on extreme values. However, the assumptions underlying these approaches have
not always been fully validated, and may be dependent on the statistical distributions of the transformed
data. The current study evaluated variations of two commonly used techniques (“pothole” method and
standardization with an independent reference group) for identifying SSA using simulated data (derived
from normal, t and chi-square distributions) and fractional anisotropy maps derived from 50 HC. Results
indicated substantial group-wise bias in the estimation of extreme data points using the pothole method,
with the degree of bias being inversely related to sample size. Statistical theory was utilized to develop a
distribution-corrected z-score (DisCo-Z) threshold, with additional simulations demonstrating elimination
of the bias and a more consistent estimation of extremes based on expected distributional properties. Data
from previously published studies examining SSA in mild traumatic brain injury were then re-analyzed
using the DisCo-Z method, with results confirming the evidence of group-wise bias. We conclude that the
benefits of identifying SSA in neuropsychiatric research are substantial, but that proposed SSA approaches
require careful implementation under the different distributional properties that characterize neuroimaging
data. Hum Brain Mapp 00:000–000, 2014. VC 2014 Wiley Periodicals, Inc.
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INTRODUCTION

Diffusion tensor imaging (DTI) studies are increasingly
being used to characterize white matter abnormalities in
neuropsychiatric populations including multiple sclerosis
(Ge et al., 2005), schizophrenia (Davis et al., 2003; Scheel
et al., 2012), mild traumatic brain injury (mTBI; Hulkower
et al., 2013; Niogi and Mukherjee, 2010; Shenton et al.,
2012), and substance abuse disorders (Monnig et al., 2013).
The majority of published studies utilize traditional region
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of interest (ROI) or voxel-wise analyses to directly com-
pare patient groups to healthy controls (HC). This analytic
approach is based on the implicit assumption that clini-
cally heterogeneous patients have a homogenous pattern
of image-based abnormalities (i.e., high degree of spatial
overlap), which in turn results in statistically different
sample means during voxel-wise or ROI comparisons.
However, it is increasingly recognized that the pattern of
white matter injury may vary both across individual
patients in mTBI (Bouix et al., 2013; Kim et al., 2013; Ling
et al., 2012; Lipton et al., 2012; Pasternak et al., 2014; White
et al., 2009), as well as change as a function of disease pro-
gression. The latter point is most readily apparent for mul-
tiple sclerosis, in which white matter lesions occur and
remit in different locations as a natural function of the dis-
ease course (Ge et al., 2005).

The need for developing automated algorithms that clas-
sify subject-specific abnormalities (SSA) on a voxel-wise basis
has long been recognized for both clinical and research pur-
poses (Poline and Mazoyer, 1993). The first step for identify-
ing a SSA is to compare an individual subject’s data to a
known reference distribution, typically derived from a cohort
of HC (Viviani et al., 2007). SSA are typically determined
based on an extreme deviation from a known or estimated
probability density function. However, a percentage of SSA
is expected based on chance alone even in HC, and research-
ers typically wish to determine whether the frequency of
abnormalities is statistically different in patient samples rela-
tive to controls. A spatially variable pattern of SSA (i.e., scat-
tered lesions) would likely result in only small (i.e., non-
significant) deviations (e.g., slight skew or kurtosis) in the
distribution of patient and control data on a voxel-wise level.
Therefore, two stages of data analyses are typically necessary
for determining (1) whether the subject-specific data points
are abnormal (i.e., extreme), and (2) whether the frequency of
SSA (similar to a metric of lesion load) is statistically different
across samples of HC and patients.

The “pothole” method (White et al., 2009) has proven to
be popular in the neuroimaging community (Davenport
et al., 2012; Ehrlich et al., 2013; Jorge et al., 2012; Ling et al.,
2012; Mayer et al., 2012; White et al., 2013) for comparing
the number of SSA between patients (hereafter referred to
as the comparison group) and HC (hereafter referred to as
the reference group) across several different neuroimaging
modalities. In the pothole method, data from both the refer-
ence and comparison groups are z-transformed on a voxel-
wise basis using statistical moments (mean and standard
deviation) derived from the reference group. The
z-transformed voxels are subsequently classified as being
normal or abnormal based on study specific thresholds
(e.g., �95th percentile using z<22 or z> 2), typically in
conjunction with a spatial-volume threshold (e.g., 20 contig-
uous voxels) to reduce the likelihood of false positives, sim-
ilar to other cluster-based approaches frequently used in
the literature (Friston et al., 1996; Hayasaka et al., 2004).

Other methods for identifying SSA include z-
transforming each member of the reference group on the

basis of all other members from the reference group
(leave-one-out sampling), while z-transforming the com-
parison group based on all members of the reference
group (Bouix et al., 2013; Pasternak et al., 2014). In this
approach, all data are therefore z-transformed using vari-
ous independent samples but with identical z-thresholds.
Similar cross-validation techniques have been used to
determine significant departures from the reference distri-
bution in individual patients with various neurological
disorders based on t random fields (Viviani et al., 2007).

Bootstrapping is another popular technique for estimat-
ing extreme values (Viviani et al., 2007). Bootstrapping has
been used in conjunction with the z-transform approach
(Enhanced Z-score Microstructural Assessment of Pathol-
ogy [EZ-MAP]) to reduce the impact of variance scaling
for both between-subject (Kim et al., 2013) and within-
subject (Lipton et al., 2012) comparisons following mTBI.
Importantly, to date the EZ-MAP method has been imple-
mented using an independent sample of controls as the
reference group, which is statistically similar to the leave-
one-out approach followed by an additional correction for
variance scaling (Bouix et al., 2013; Pasternak et al., 2014).
Other approaches for determining extreme values are the
one versus many t-test (Lipton et al., 2008; Patel et al.,
2007) and the use of binomial distributions (Mac Donald
et al., 2011). Finally, machine learning algorithms have
been used to identify traumatic axonal injury using micro-
bleeds as priors (Hellyer et al., 2012).

The underlying assumptions of all approaches (e.g., the
impact of sample size and distribution properties) have
not always been thoroughly considered in the context of
typical neuroimaging data (Viviani et al., 2007), which can
have critical implications and potentially lead to bias (i.e.,
a systematic difference across repeated samples between a
sample statistic and a population parameter). For example,
the pothole approach inherently assumes that the resultant
distributions of the z-transformed data are identical across
both the reference and comparison groups. However, dif-
ferences in variance exist for z-transformed data depend-
ent on whether the data point is included in the
computation of the reference mean. Consequently, the sta-
tistical distributions of the z-transforms are different for
the reference and comparison groups even in the null set-
ting where the population distributions are identical (i.e.,
when two samples of HC are derived from the overall
population). In contrast to previously published methods
such as cross-validation and the EZ-MAP (Bouix et al.,
2013; Kim et al., 2013), an alternative approach is to use
statistical theory to derive distribution-corrected z-score
(DisCo-Z) adjustments for the thresholds of the reference
and comparison groups so that the probability of extreme
values is identical.

To this end, we provide a theoretical consideration of
the probability distributions of z-transformed data from
the reference (HC) and comparison (patient group) sam-
ples. We assume that each observation in a given voxel/
ROI is standardized by the mean �X and standard
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deviation s from the reference group and that the reference
and comparison populations have identical multivariate
normal (i.e., Gaussian) distributions of responses across
voxels. For a given voxel, let ZR5ðXR2�XÞ=s and ZC5ðXC

2�XÞ=s be the z-score transforms for random responses XR

and XC from the reference and comparison populations.
The reference group mean �X and standard deviation s esti-
mate the common population voxel mean l and standard
deviation r. Regardless of a normality assumption, Var
XC2�X
� �

5r2ð11 1
NÞ and Var XR2�X

� �
5r2ð12 1

NÞ, where N
is the reference group sample size and Var refers to var-
iance. These variances are different because XC is statisti-
cally independent of �X , whereas XR and �X are positively
correlated due to �X being computed from a sample that
includes XR. Incorrectly accounting for these differences in
variance may lead to bias. Consequently, different stand-
ardizations of (XC 2 �X) and (XR 2 �X) are warranted, sug-
gesting that the distributions of ZC and ZR are likely
different.

Geisser notes that Tc5
XC2�X

s
ffiffiffiffiffiffiffi
11 1

N

p� �5Zc

ffiffiffiffiffiffiffiffiffiffi
N

N11ð Þ

q
has a Stu-

dent’s t distribution with N 2 1 degrees of freedom, writ-
ten symbolically as TC � tN21 (Geisser, 1993). Cook and
Weisberg show that the distribution of the studentized

residual TR5 XR2�X

s
ffiffiffiffiffiffiffi
12 1

N

p� �5ZR

ffiffiffiffiffiffiffiffiffiffi
N

N21ð Þ

q
is symmetric about zero

with a standard deviation of 1, and that
T2

R

N21 has a Beta

distribution with parameters 0:5 and 0:5ðN22Þ (Cook and
Weisberg, 1982). As a result, the distributions of ZC and
ZR differ, which leads to different probabilities that ZC

and ZR are more extreme at a common fixed threshold,
even when the underlying distributions of XC and XR are
identical.

Our proposed DisCo-Z correction modifies the z-
thresholds so that exceedance probabilities for the two dis-
tributions are identical in the null case. We first specify a
fixed threshold probability (e.g., a < 0.05), and desired
upper tail thresholds cN and rN that are necessarily a func-
tion of N so that

a5Pr ZR > rNð Þ5Pr ZC > cNð Þ (1)

The arbitrary choice of a 5 0.0228 corresponds to the

probability a standard normal random variable exceeds a

z-score of 2. Using the distributions given above, we dem-

onstrate that the adjusted value for the comparison group

is given by

cN5t12a;N21

ffiffiffiffiffiffiffiffiffiffiffiffi
11

1

N

r
(2)

where t12a, N21 is the 100(1 2 a) percentile of the tN21 dis-
tribution and N is the reference group sample size. It is
also notable that Eq. (2) corresponds to the one-versus-
many test that has been previously suggested for examin-
ing a single subject’s data against a reference population
(Lipton et al., 2008; Patel et al., 2007), as well as the pri-

mary transformation that occurs when using the leave-
one-out method. Importantly, the shape of the t-distribu-
tion is dependent on N, especially at lower sample sizes.
Thus, equivalent z-thresholds are not necessarily applica-
ble for the reference and comparison groups using the
leave-one-out method in the case of unequal N between
reference and comparison groups.

In contrast, the adjusted threshold for the z-transformed
values for the reference group is given by

rN5 N21ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B 122a; 0:5; 0:5½N22�ð Þ

N

r
(3)

where B(1 2 2a, 0.5, 0.5[N 2 2]) is the 100(1 2 2a) percentile
of a Beta distribution with parameters 0.5 and 0.5(N 2 2).
Z-transforming longitudinal (i.e., correlated) data from the
reference group is dependent on the degree of covariance
between observations on the same individual. A derivation
for transforming longitudinal data from the reference
group, and the fundamental statistical relationship
between the DisCo-Z and leave-one-out approach, is pre-
sented in supplementary materials.

The DisCo-Z thresholds are therefore different for the
two samples and dependent on N, with the degree of
adjustment decreasing as a function of increasing N (Sup-
porting Information Table 1). Although these effects will
be present during the z-transformation of any identical
normal distributions (e.g., clinical data), appropriate cor-
rections are more critical in neuroimaging studies given
the large number of voxels that are z-transformed.

Monte Carlo simulations (simulated and real data) are
first used to compare performance of the pothole, inde-
pendent reference sample and DisCo-Z methods for identi-
fying extreme values in simulated and DTI data derived
from 50 HC, where no differences between randomly
selected samples were expected. The second aim was to
evaluate the robustness of the DisCo-Z method on simu-
lated data with different distribution properties (normal, t,
and chi-square) that may more closely represent the data
acquired with most neuroimaging techniques, and to eval-
uate other commonly used methods. Finally, previously
published data from our lab (Ling et al., 2012; Mayer
et al., 2012) that compared SSA between mTBI patients
and control populations using the pothole method were
also re-examined.

METHODS AND RESULTS

The current investigation was conducted on two DTI
datasets presented in previous publications. The first data-
set (Ling et al., 2012) included 50 adult mTBI patients (25
males; 27.88 6 9.22 years old; 13.12 6 2.21 years of educa-
tion) and 50 matched adult HC (25 males; 27.42 6 8.96
years old; 13.90 6 2.09 years of education). The adult HC
dataset was used for all Monte Carlo simulations
described below. The second dataset (Mayer et al., 2012)
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included 15 pediatric mTBI patients (13 males; 13.47 6 2.20
years old; 6.87 6 2.23 years of education) and 15 matched
children (12 males; 13.40 6 1.84 years old; 7.27 6 1.87 years
of education), and was used for the purpose of data re-
analyses only. Participants were excluded from the study
if there was a history of neurological disease, psychiatric
disturbance, additional closed head injuries with more
than 5 minutes loss of consciousness, a head injury within
the last year, learning disorder, ADHD, or a history of
recent substance or alcohol abuse. Informed consent was
obtained from all participants according to institutional
guidelines at the University of New Mexico.

MR Imaging

All images were collected on a 3 Tesla Siemens Trio
scanner. Foam padding and paper tape were used to
restrict motion within the scanner. High resolution T1-
weighted anatomic images were acquired with a 5-echo
multi-echo MPRAGE sequence (TE 5 1.64, 3.5, 5.36, 7.22,
9.08 ms, TR 5 2.53 s, TI 5 1.2 s, 7� flip angle, NEX 5 1, slice
thickness 5 1 mm, FOV 5 256 3 256 mm, voxel reso-
lution 5 1 3 1 3 1 mm3). A single run (pediatric sample)
or two runs (adult sample) of DTI scans (b 5 800 s/mm2)
were acquired using a twice-refocused spin echo sequence
with 30 diffusion gradients and the b 5 0 experiment
repeated five times (72 interleaved slices; TE 5 84 ms;
TR 5 9 s; 90� flip angle; NEX 5 1; slice thickness 5 2.0 mm;
FOV 5 256 3 256 mm; matrix size 5 128 3 128; voxel reso-
lution 5 2 3 2 3 2 mm3). GRAPPA (23 acceleration and
32 reference lines) was used to reduce susceptibility-
induced image distortions.

The AFNI software package (Cox, 1996) was used to
process and analyze DTI datasets. In the adult samples,
the raw DTI data and gradient tables were first concaten-
ated across the two runs. Image distortions caused by
eddy currents and head motion from both samples were
next corrected by registering all diffusion weighted images
to the first b 5 0 s/mm2 image using a 12 degree of free-
dom (df) affine correction with mutual information as the
cost function. The vector corresponding to the rotation
component was then extracted from the resultant transfor-
mation matrix and applied to the gradient table. Prior to
calculating diffusion tensors and scalar measures (frac-
tional anisotropy [FA]), images were smoothed anisotropi-
cally to improve signal to noise characteristics (Ding et al.,
2005). A non-linear method was adopted for tensor calcu-
lations to decrease tensor estimate errors caused by noise,
especially in regions of high anisotropy (Cox and Glen,
2006). Diffusion weighted images were registered to the
subject’s T1 anatomic image using an affine transformation
with 12 df and Local Pearson Correlation as the cost func-
tion (Saad et al., 2009). This transformation matrix was
then multiplied by the matrix corresponding to T1 stereo-
taxic normalization such that each participant’s FA data
was normalized to Talairach space. Each subject’s FA data

was then blurred with a 6 mm FWHM kernel. To reduce
the number of comparisons and restrict the analysis to
white matter, all data was masked by the Johns Hopkins
University (JHU) white matter labels atlas from FSL (Mori
and van Zijl, 2007).

Standard Pothole Approach

Analyses using the Shapiro–Wilk test were first con-
ducted to determine the degree of deviation from normal-
ity for the HC data (N 5 50) within the JHU mask. Results
indicated that 39,635 (26.92%) of the 147,244 voxels were
non-normally distributed (P< 0.05). Of the non-normal
voxels, 7,681 (19.38%) showed evidence of a negative skew
(<20.5) as measured using the third moment about the
mean divided by the standard deviation (Bulmer, 1979).

The next series of analyses evaluated the pothole
method (White et al., 2009). First, the spatially normalized
whole-brain FA maps from 50 HC were randomly
sampled with replacement into either a reference (RF) or
comparison (CP) group to maintain statistical independ-
ence in the sampling procedure. Sample sizes of N 5 10 to
N 5 50 per group were evaluated, using steps of N 5 5.
Second, the mean and standard deviation of FA were cal-
culated for each voxel from the reference group. Third,
individual subject data for both the reference and compari-
son groups were transformed to signed z-scores on a
voxel-wise basis using the statistical moments derived
from the reference group. Extreme voxels in both groups
were identified based on two standard deviations above
(z> 2; positive) or below (z<22; negative) the reference’s
voxel mean. Fourth, a minimum cluster size threshold of
128 mL (16 native voxels) was also applied to the data to
reduce the likelihood of false positives (Kim et al., 2013;
White et al., 2009).

Fifth, the number of voxels exceeding both the magni-
tude and spatial cluster threshold were then summed for
each subject, as were the number of surviving clusters.
There were a total of 147,244 1-mm isotropic voxels in the
JHU atlas, suggesting that approximately 3,358 voxels
(2.28%) should survive the magnitude threshold of z 5 |2|
per tail assuming a normal distribution with spatially
independent voxels. However, this value was only used as
a general benchmark given the native smoothness of MRI
data and the 6 mm blur that was applied to the data.
Finally, two-tailed independent samples t-tests compared
whether the number of voxels and clusters that exceeded
the z-threshold were statistically different between the ref-
erence and comparison groups (P< 0.05). Statistically sig-
nificant t-tests were summarized to reflect whether the
mean number of extreme voxels was greater for the RF
(i.e., RF>CP) or the CP group (i.e., CP>RF) for both posi-
tive and negative tails. The entire procedure (steps 1–6)
was then iterated 100 times. The magnitude of bias was
quantified using the percentage of t-tests that were signifi-
cantly different across groups. In the absence of bias and
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under the null distribution, approximately 5% of the t-tests
comparing the reference and comparison groups should
have been significant and equally distributed (CP>RF �
RF>CP).

As predicted by Eqs. (2) and (3), results of these simula-
tions revealed a significant bias for the comparison group
(CP>RF) when using the pothole method. Importantly,
the number of positive and negative extremes (voxels or
clusters) exceeded expectations (3,358 voxels) for the com-
parison group and was below expectations for the refer-
ence group (Fig. 1A; rows 1 and 3), with significant bias
present for comparison relative to reference group
(CP>RF) in both the positive and the negative tails (Fig.
1A; rows 2 and 4). The magnitude of bias varied as a func-
tion of sample size. At N 5 10 the comparison group
exhibited a statistically significantly greater mean number
of extreme voxels (positive extremes 5 50% of iterations;
negative extremes 5 69%; Fig. 1A, row 2) and clusters
(positive extremes 5 68%; negative extremes 5 68%; Fig.
1A, row 4) relative to the reference group. Although the
bias decreased rapidly with increasing sample size, signifi-
cant bias for the comparison group was still present for
voxels (positive extremes 5 25%; negative extremes 5 28%)
as well as clusters (positive extremes 5 31%; negative
extremes 5 26%) at sample sizes (N 5 30) that are typically
equivalent or greater than most published DTI studies.
Finally, the number of extreme voxels was typically larger
for negative relative to positive tails across all sample
sizes. Supplemental analyses indicated that results were
similar when non-parametric tests were used for group
comparisons to estimate bias.

Bias Correction Using the DisCo-Z Method

Next, we evaluated whether our theoretically deter-
mined adjustments for z-thresholds would be sufficient for
correcting the biases that existed in both the reference and
comparison groups for the pothole method. The samples
and methodology used in these analyses were identical to
the pothole method with the exception that instead of
applying a uniform z-threshold (e.g., z> 2; z<22) to the
data from both groups, adjusted z-thresholds were now
determined by either Eq. (2) (comparison group) or (3)
(reference group). Independent samples t-tests were again
used to assess the presence of bias in the z-transformed
data between the reference and comparison groups (uncor-
rected value of P< 0.05).

Results indicated that the DisCo-Z method eliminated
almost all bias regardless of sample size. Specifically, the
percentage of significant differences between the two com-
parison groups approximated alpha when summed across
the group t-tests (Fig. 1B, rows 2 and 4). There was no evi-
dence of bias even when P-value was increased to 0.10
(see Supporting Information Fig. 1). Moreover, in contrast
to the pothole method, the number of surviving voxels
(Fig. 1B, row 1) and clusters (Fig. 1B, row 3) was consist-

ent across all sample sizes, with the number of voxels
approaching theoretical predictions (3,358 voxels) for nega-
tive but not positive extremes. Similar to the pothole
results, the number of extreme negative voxels was again
higher than the number of positive voxels, which likely
resulted from the predominately negative skew in a
minority (�19%) of the voxels.

Standardization with an Additional Reference

Sample

Other approaches for correcting bias include variations
on the use of statistically independent groups to generate
the statistical moments, followed by z-transformations of
the data (Bouix et al., 2013; Kim et al., 2013). To evaluate
this approach, the 50 HC were first randomly assigned
with replacement to either a reference or a comparison
group of size N. Participants in the comparison group were
then randomly sampled with replacement to achieve two
separate comparison groups (CP1 and CP2) of similar N.
Otherwise identical procedures were applied to the data as
used with the pothole and DisCo-Z method. Independent
t-tests were then conducted to compare both voxel counts
and the number of significant clusters between the two
comparison groups on the z-transformed data.

Results indicated that the number of surviving voxels/
clusters were inversely proportional to sample size for
both comparison groups given the properties of a
t-distribution at smaller N (see Fig. 1C). However, there
was no evidence of group-wise bias between the two com-
parison groups across different sample sizes for either the
voxel count data or the number of clusters (significant dif-
ferences between comparison groups approximately 5%).
Negative extremes were again always significantly larger
than positive extremes.

Simulations with Normal and Non-Normal

Distributions

The theoretical basis for the DisCo-Z method described
in the introduction assumes a normal distribution. How-
ever, this assumption was violated in almost 27% of the
voxels in our DTI dataset, and an assumption of normality
may not be true for data derived from different imaging
modalities. Therefore, Matlab was used to simulate data
derived from normal, t, and chi-square distributions to
further evaluate the robustness of the DisCo-Z method as
well as previously proposed methods. To maintain consis-
tency with previous analyses, the same number of data
points (e.g., 147,244 “voxels”) was used in each of the sim-
ulations. Similar to our DTI results, the simulations were
run for sample sizes 10–50 for the reference and compari-
son groups in steps of 5, with the number of iterations
increased to 400.

In the first simulation, values for the reference and com-
parison groups were randomly sampled from a standard
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Figure 1.

This figure presents results of z-transformed FA data derived from 50

HC at sample sizes from 10 to 50 in increments of 5 using the pothole

method (Column A), DisCo-Z method (Column B), or using an inde-

pendent sample (Column C). For all data, the first row presents the

number of extreme voxels that exceeded statistical (Columns A and

C 5 |z|> |2|; Column B DisCo-Z determined threshold) and spatial

(16 native voxels) thresholds, whereas the second row depicts the per-

centage of t-tests that were statistically different (P< 0.05) between

the groups. The third row presents the number of clusters surviving

the positive and negative thresholds, with the fourth row depicting the

percentage of significant t-tests. Error bars on the first and third rows

depict the average standard error of the mean across iterations. Note

that the scaling for the t-test graphs (second and fourth row) is different

for the pothole method (Column A; maximum 100) relative to the two

correction methods (Columns B and C; maximum 10). Columns A and

B are color-coded to reflect results from both the negative (Neg) and

positive (Pos) tails of the distribution for the reference (RF Neg5 black

bars; RF Pos5 dark gray bars) and comparison (CP Neg5 light gray

bars; CP Pos5 white bars) groups. Results from the t-tests are similarly

color-coded to indicate whether bias in the estimation of extreme val-

ues was more prevalent in the CP relative to RF group for each of the

tails (e.g., CP>RF (Neg)5 light gray). Column C also presents results

from two comparison groups (CP1 and CP2) when the statistical

moments were derived from a third independent group that served as

the reference. The series of graphs clearly depict the over-estimation

(CP) and under-estimation (RF) of z-scores and resultant bias when

using the pothole method, and the elimination of the bias with either

the DisCo-Z method or through an independent group.



normal distribution (m5 0, r 5 1). For the second simula-
tion, a t-distribution (6 df) was selected to examine the
effects of kurtosis (i.e., sub-Gaussian distribution with
heavy tails). The third and fourth simulations randomly
sampled values for the reference and comparison groups

from two chi-squared distributions with different degrees
of freedom to model a stronger (6 df) or weaker (12 df)
skew. The chi-squared and t-distributions were also scaled
to have a variance of 1. For all simulations, the data were
further constrained to have an average interclass-
correlation of 0.10, which roughly corresponded to the cor-
relation measured from 500 randomly selected voxels in
our HC sample (mean r 5 0.12; sd 5 0.20). Examples of the
simulated distributions are presented in Supporting Infor-
mation Figure 2, as well as the effects of z-transforms
using the pothole approach on both the reference and
comparison groups.

For each of the iterations, a reference and a compari-
son group of a given sample size was randomly gener-
ated from the four different distributions. The data were
then z-transformed using the statistical moments from
the reference group. Extreme voxels were identified in
both the reference and comparison groups based on
either identical thresholds (z> 2; z<22) or by the
DisCo-Z method. Group-wise tests (independent t-tests)
were then conducted between the comparison and refer-
ence groups on the number of surviving voxels for both
the unadjusted and adjusted methods. The number of
significant t-tests (P< 0.05) was then computed across all
iterations.

In general, the results from the simulated, normally-
distributed data were similar to unadjusted and DisCo-Z
results from the DTI data (Fig. 2A, B), and closely fol-
lowed theoretical predictions (Fig. 2C, D). The largest dif-
ferences between the reference and comparison groups
were present at the smaller (N 5 10) sample sizes (positive
extremes 5 96%; negative extremes 5 96.5%), with the
degree of bias diminishing as a function of increasing sam-
ple (N 5 30; positive extremes 5 49.25%; negative extremes
5 45.25%). Appropriate statistical adjustment of the thresh-
old values using the DisCo-Z method eliminated the bias
across all sample sizes. The results from the t-distribution
(Fig. 3) were similar in terms of magnitude of bias (N 5 10:
positive extremes 5 94.75%; negative extremes 5 94.5%) as
well as the elimination of bias with the DisCo-Z method.

Similar results were also observed for the chi-squared
simulation using either 6 (N 5 10: positive extreme-
s 5 97.2%; negative extremes 5 53.5%) or 12 (N 5 10: posi-
tive extremes 5 97.8%; negative extremes 5 77.3%) df (Figs.
4 and 5) distributions. As evidenced by the chi-square
results, the degree of bias between the reference and com-
parison groups for positive extremes was also affected by
the degree of skew within the distribution (bias in Fig.
4A< Fig. 5A). In contrast, bias for negative extremes
remained relatively constant regardless of the degree of
skew. This was confirmed by reversing the direction of
skew by multiplying values sampled from the initial distri-
bution by 21. In negatively skewed distributions, the bias
now changed as a function of skew only for negative
extremes (bias in Supporting Information Figs. 3A< 4A).

Finally, additional simulations were performed to test
the effects of using an independent sample as a reference

Figure 2.

Data for these graphs were sampled from a standard normal

distribution (m5 0, r 5 1) at sample sizes between 10 and 50 in

increments of 5. Row 1 looks at extreme values (Panel A:

|z|> |2| for pothole method; Panel B: DisCo-Z adjusted thresh-

old) in the negative (Neg) and positive (Pos) tails of the distribu-

tion. The number of data points surviving the statistical

threshold for both the reference (RF Neg 5 black bars; RF Pos-

5 dark gray bars) and comparison (CP Neg 5 light gray bars; CP

Pos 5 white bars) groups are presented in the first row,

whereas the second row presents the percentage of significant

t-tests (P< 0.05) using a similar color scheme to indicate

whether bias was greater in the CP relative to RF group. Voxel

count error bars depict the average standard error of the mean

across iterations. Note that the scaling for t-test graphs is differ-

ent for the unadjusted threshold (maximum 100) relative to the

DisCo-Z method (maximum 10). Panels C and D plot statisti-

cally derived z-thresholds for eliminating bias in the comparison

group [CP; light gray line derived from Eq. (2)] and reference

group [RF; black line derived from Eq. (3)] and against a com-

mon study specific z-threshold (z 5 2, horizontal line) as a func-

tion of sample size. Panel C depicts z-thresholds for sample

sizes ranging from 10 to 500, while Panel D focuses in on sam-

ple sizes from 10 to 50.
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group (Fig. 6A), the leave-one-out method (Fig. 6B), and
the EZ-MAP approach (Fig. 6C). The normal distribution
was chosen for these additional simulations, and identical
methods were utilized as in Figure 2. Similar to DTI
results presented in Figure 1C, the use of an independent
third reference group with two comparison groups elimi-
nated all evidence of group-wise bias between comparison
groups. The resulting distributions from both CP1 and
CP2 generally followed the predicted t-distribution as evi-
denced by the decrease in extrema as a function of N (Fig.
6A). For the leave-one-out method, each observation from
the reference group was z-transformed based on the
remainder of observations, whereas the comparison group
was z-transformed based on the entire reference group.
Identical z-thresholds were then applied to both groups,
as has been commonly implemented in the literature. As
expected, results from the leave-one-out method were sim-
ilar to the independent group with one important excep-
tion (Fig. 6B). Specifically, as predicted by statistical

theory, there was a small but consistent evidence of bias
between the RF and CP groups (RF>CP) at smaller sam-
ple sizes due to the differential N used to z-transform each
group (RF 5 N – 1; CP 5 N). This is a direct result of using
identical z-thresholds for both groups, which affects the
probability of extrema more in small sample sizes due to
the shape of t-distributions as a function of N.

The EZ-MAP method was also implemented with an
independent sample serving as the reference group based
on published reports. Specifically, the data from the two
comparison groups was first transformed using the mean
and standard deviation from the reference sample, and
then divided by a bootstrapped standard deviation
derived from the reference sample to account for variance
under-estimation (Kim et al., 2013). In addition to eliminat-
ing group bias (Fig. 6C), the EZ-MAP method also
reduced the number of extrema observed in both compari-
son groups to statistically predicted levels (�3,358 extrema
per tail). Importantly, as evidenced by Supporting

Figure 3.

Data for these graphs were sampled from a population with a

t-distribution (6 df) at sample sizes between 10 and 50 in incre-

ments of 5. Row 1 looks at extreme values (Panel A: |z|> |2|

for pothole method; Panel B: DisCo-Z adjusted threshold) in

the negative (Neg) and positive (Pos) tails of the distribution.

The number of data points surviving the statistical threshold for

both the reference (RF Neg 5 black bars; RF Pos 5 dark gray

bars) and comparison (CP Neg 5 light gray bars; CP Pos 5 white

bars) groups are presented in the first row, whereas the second

row presents the percentage of significant t-tests (P< 0.05) using

a similar color scheme to indicate whether bias was greater in

the CP relative to RF group. Voxel count error bars depict the

average standard error of the mean across iterations. Note that

the scaling for t-test graphs is different for the unadjusted

threshold (maximum 100) relative to the DisCo-Z method

(maximum 10).

r Mayer et al. r

r 8 r



Information Figure 5, using the EZ-MAP method with a
single reference sample resulted in group-wise bias
(RF>CP) that decreased as a function of sample size. Spe-
cifically, in this simulation the bias associated with the
comparison group is corrected whereas the bias with the
reference group is not [Eq. (3)].

Re-Analyses of Previous Data

Finally, we applied the DisCo-Z correction method to
two previously published studies in which the pothole
method was utilized (Ling et al., 2012; Mayer et al., 2012).
The first study reported increased FA within the genu of
the corpus callosum and several other ROI in 50 semi-
acutely (i.e., <21 days post) injured mTBI patients relative
to 50 HC (Ling et al., 2012). Result from the pothole analy-

sis indicated a greater number of clusters with increased
FA (F1,97 5 6.41, P 5 0.013, Cohen’s d 5 0.54) for mTBI
patients relative to HC during the semi-acute injury phase,
with no group differences observed for clusters with
decreased FA (P> 0.10). Twenty-six adult mTBI patients
and 26 HC returned for a follow-up visit approximately
4 months post-injury. Results from a longitudinal pothole
2 3 2 (Group 3 Time) mixed measures ANCOVA analysis
indicated a trend in the Group 3 Time interaction
(F1,49 5 3.68, P 5 0.061) for the total number of positive
clusters. Simple-effects testing indicated that clusters with
increased FA were significantly reduced at Visit 2 for the
mTBI patients (t1,25 5 2.40, P 5 0.024) but were unchanged
for HC (P> 0.10).

The results from the pothole analyses were therefore
repeated using identical methods, with the exception of

Figure 4.

Data for these graphs were sampled from a highly positively

skewed chi-squared distribution (6 df) at sample sizes between

10 and 50 in increments of 5. Row 1 looks at extreme values

(Panel A: |z|> |2| for pothole method; Panel B: DisCo-Z

adjusted threshold) in the negative (Neg) and positive (Pos) tails

of the distribution. The number of data points surviving the sta-

tistical threshold for both the reference (RF Neg 5 black bars;

RF Pos 5 dark gray bars) and comparison (CP Neg 5 light gray

bars; CP Pos 5 white bars) groups are presented in the first

row, whereas the second row presents the percentage of signifi-

cant t-tests (P< 0.05) using a similar color scheme to indicate

whether bias was greater in the CP relative to RF group. Voxel

count error bars depict the average standard error of the mean

across iterations. The evidence of bias in the pothole method

was eliminated through statistical adjustment of z-thresholds

despite the significant skew of the sample, although significant

differences emerged in the number of negative and the positive

extremes as well as the subsequent bias in each of the tails.

Note that the scaling for t-test graphs is different for the unad-

justed threshold (maximum 100) relative to the DisCo-Z

method (maximum 10).
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the adoption of the recommended DisCo-Z thresholds.
Reanalyzed results indicated that number of clusters with
increased FA were no longer statistically significant
(F1,97 5 1.86, P 5 0.175, d 5 0.29) between mTBI patients
and controls at Visit 1. Cluster metrics of decreased FA
remained non-significant (P> 0.10) as well. Visit 2 data
were also reanalyzed to assess for dynamic change in the
mTBI group. Because of the expected correlation between
Visit 1 and Visit 2 data, and the derivation of the statistical
moments used in z-transforms from HC (i.e., reference
sample) Visit 1 sample, the resulting Visit 2 z-transformed
distribution for HC should be intermediate to a scaled
signed square root of a Beta (perfect correlation between
Visits 1 and 2) and a t (no correlation between Visits 1 and
Visit 2) distribution (see Supporting Information Materi-
als). In contrast, the patient data at both time-points is stat-
istically independent from the Visit 1 HC data, such that a
t-distribution [Eq. (2)] can still be applied to correct the

Visit 2 mTBI data. Results from the longitudinal analyses
(paired t-tests) using the DisCo-Z correction method indi-
cated a reduction in the number (t1,25 5 3.59, P 5 0.001)
and volume (t1,25 5 3.81, P 5 0.001) of clusters with
increased anisotropy at Visit 2 for the mTBI patients. Rean-
alysis of the Visit 2 data for clusters metrics regarding
decreased FA remained non-significant (P> 0.10).

Our second study examined diffusion abnormalities in a
smaller cohort of 15 pediatric mTBI patients and 15 pediat-
ric HC (Mayer et al., 2012). ROI results again indicated
increased FA within the right and left anterior corona radi-
ata, and left cerebral peduncles (P< 0.05), with a non-
significant trend for the left superior corona radiata
(P 5 0.052) for patients relative to controls. A standard
voxel-wise analysis indicated increased FA for pediatric
mTBI patients within several white matter tracts following
appropriate corrections for false positives (P< 0.05). Pot-
hole analyses indicated significantly increased number

Figure 5.

Data for these graphs were sampled from a moderately posi-

tively skewed chi-squared distribution (12 df) at sample sizes

between 10 and 50 in increments of 5. Row 1 looks at extreme

values (Panel A: |z|> |2| for pothole method; Panel B: DisCo-Z

adjusted threshold) in the negative (Neg) and positive (Pos) tails

of the distribution. The number of data points surviving the sta-

tistical threshold for both the reference (RF Neg 5 black bars;

RF Pos 5 dark gray bars) and comparison (CP Neg 5 light gray

bars; CP Pos 5 white bars) groups are presented in the first

row, whereas the second row presents the percentage of signifi-

cant t-tests (P< 0.05) using a similar color scheme to indicate

whether bias was greater in the CP relative to RF group. Voxel

count error bars depict the average standard error of the mean

across iterations. Note the elimination of bias with the DisCo-Z

method, with differential effects in the negative and positive tails

of the distribution. The scaling for t-test graphs is different for

the unadjusted threshold (maximum 100) relative to the DisCo-

Z method (maximum 10).
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(t28 5 7.27, P< 0.00001, d 5 2.7) and volume (t28 5 6.98,
P< 0.00001, d 5 2.6) of clusters with increased FA for pedi-
atric mTBI patients relative to HC at Visit 1, with no sig-
nificant differences for cluster metrics of decreased FA. A
2 3 2 (Group 3 Visit) longitudinal pothole analyses in 10
returning pediatric mTBI subjects and matched controls
indicated a significant (F2,17 5 15.67, P< 0.0001) multivari-
ate effect of group for the number and volume of clusters
with increased FA, with a non-significant Group 3 Visit
interaction.

Reanalyses of Visit 1 data using the DisCo-Z method
indicated that the group difference in the number
(t28 5 2.29, P 5 0.030, d 5 0.84) and volume (t28 5 2.57,
P 5 0.016, d 5 0.97) of clusters with increased FA remained
significantly increased for the pediatric mTBI sample. In
addition, HC also exhibited a greater number (t21 5 22.95,
P 5 0.008) and volume (t22.3 5 23.23, P 5 0.004) of clusters

with decreased FA. However, the latter finding resulted
from a 0 cluster count in 9/15 of the mTBI patients. Rean-
alysis of the longitudinal data with DisCo-Z method indi-
cated that there was no significant change (P> 0.10) in the
number or volume of clusters with either increased or
decreased FA for the pmTBI patients at 4 months post-
injury.

DISCUSSION

Several analytic techniques have been proposed for cap-
turing regions of abnormal signal (“lesions”) on a subject-
specific basis, including variations on normative (i.e.,
z-scores) transformations (Bouix et al., 2013; Davenport
et al., 2012; Jorge et al., 2012; Ling et al., 2012; Mayer et al.,
2012; White et al., 2009), cross-validation (Viviani et al.,

Figure 6.

This figure presents simulated data derived from a normal distri-

bution at sample sizes ranging from 10 to 50 in increments of 5.

Methods of comparison include using a third reference sample

to derive statistical moments for two comparison groups (CP1

and CP2; Column A), the leave-on-out method (Column B), or

the EZ-MAP method (Column C). The first row presents the

number of extreme voxels that exceeded statistical thresholds

as determined by each model, whereas the second row depicts

the percentage of t-tests that were statistically different

(P< 0.05) between the groups. Error bars on the first row

depict the average standard error of the mean across iterations.

Columns A and C are color-coded to reflect results from both

the negative (Neg) and positive (Pos) tails of the distribution for

two comparison groups derived from a third independent sam-

ple (CP1 Neg 5 black bars; CP1 Pos 5 dark gray bars; CP2

Neg 5 light gray bars; CP2 Pos 5 white bars). Column B is

color-coded to reflect results from both the negative (Neg) and

positive (Pos) tails of the distribution for the reference (RF

Neg 5 black bars; RF Pos 5 dark gray bars) and comparison (CP

Neg 5 light gray bars; CP Pos 5 white bars) groups. Results

from the t-tests are similarly color-coded to indicate whether

bias in the estimation of extreme values was more prevalent in

the CP relative to the RF group for each of the tails (e.g., CP >
RF (Neg) 5 light gray). The series of graphs show that all meth-

ods reduce group-wise bias. The EZ-MAP method reduces the

number of extrema to statistically predicted levels at all N, while

the number of extrema through the use of independent samples

decreases as a function of N.
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2007), bootstrapping (Bazarian et al., 2012), as well as a
combination of methods (Kim et al., 2013; Lipton et al.,
2012). Results from the current study indicate that
z-transforming individual participant data based on the
statistical moments from the entire reference group alone
(pothole method) resulted in bi-directional bias for both
the reference (under-estimated the number of extremes) as
well as comparison (over-estimated the number of
extremes) groups. As suggested by statistical theory, this
is a direct result of the different distributions that result
from z-transforming both the reference (normal to scaled
signed square root of a Beta distribution) and comparison
(normal to t-distribution) samples (see Supporting Infor-
mation Fig. 2) in part due to incorrect variance estimation.

Thus, the pothole method is likely to return a different
number of statistically determined extremes even when
samples are derived from the same population. In the cur-
rent study, the number of surviving voxels in the reference
and comparison groups following z-thresholding con-
verged with increasing N but did not reach statistical
equivalence (i.e., no group differences) even at sample
sizes of 50. Thus, bias with the pothole method is likely to
be present at sample sizes typically used in most neuroi-
maging studies (N 5 30 per group) and even beyond. This
is likely a result of the large number of voxels that must
be z-transformed in voxel-wise analyses, increasing the
likelihood of bias even when the theoretical differences in
the underlying z-thresholds of the transformed data are
relatively small due to large N (Fig. 2C).

Several different methods were evaluated for eliminat-
ing this bias in the current study. One set of methods
involved the utilization of an “independent” reference
group, which can include a single reference group (e.g.,
typically “healthy”) and two separate comparison (e.g.,
one “healthy” and one “patient”) groups, or a single refer-
ence group in which the individual data-points are sepa-
rately z-transformed (leave-one-out method). The principal
disadvantage of a third independent sample is the costly
nature of MR-data acquisition and the potential allure of
using convenience samples (i.e., existing data from young,
healthy right-handed individuals) to form the initial refer-
ence group. The leave-one-out approach eliminates the
costs associated with data acquisition and processing of a
separate reference group. However, the leave-one-out
approach as currently implemented is computationally
more difficult given that the number of different
z-transformations is essentially equivalent to the sample
size of the reference group (but see Supplemental Methods
for a statistical derivation). It can also lead to bias when
z-thresholds are not correctly adjusted for differing
degrees of freedom [Eq. (2)] between the reference and
comparison groups (typically N – 1) in studies with very
small N. Finally, both the independent reference sample
and the leave-one-out approach resulted in over-
estimation of extremes for both comparison groups rather
than identifying the desired number of extremes based on
probability theory (e.g., 2% of extreme data points).

Importantly, over-estimation of extremes in conjunction
with any independent sample method (a third sample or
leave-one-out) can easily be corrected by using Eq. (2).

The EZ-MAP method has also been proposed for com-
paring two groups in conjunction with a third independ-
ent reference group (Kim et al., 2013; Lipton et al., 2012).
The EZ-MAP method improves the scaling of the z-scores
by estimation of the bootstrapped variance, which approx-
imates unity as a function of increasing sample size (Kim
et al., 2013). As noted above, the utilization of an inde-
pendent reference group (either an entire group or
through the leave-one-out methodology) will eliminate the
primary bias in z-transformed data from two comparison
samples due to distributional equivalence (i.e., two t-distri-
butions). The EZ-MAP method more closely resembles a
standard normal z-distribution by correcting for inaccura-
cies in variance estimation (deviation from unity) through
repetitive sampling of the reference group. However, boot-
strapping approaches are also computationally expensive.
Importantly, the EZ-MAP approach should not be applied
to two-sample data (i.e., one patient and one control
group) when trying to estimate whether the number of
extrema vary between groups. This approach would result
in bias due to distributional changes to the reference
group following the z-transformation [Eq. (3)] in conjunc-
tion with effective correction for the comparison group
(Supporting Information Fig. 5).

Instead of bootstrapping the data to estimate variance
(EZ-MAP), theoretical adjustments can also be used to
adjust z-scores across the reference and comparison
groups to eliminate group-wise bias (DisCo-Z method).
Potential benefits of this method include ease of imple-
mentation (single z-transformation), cost-effectiveness
(does not require data collection on additional subjects),
robustness (bias eliminated at less stringent alpha values
of P< 0.10) and a more consistent/desired number of
extremes regardless of sample size relative to independent
samples approaches. The DisCo-Z adjustments for the ref-
erence and comparison groups also directly account for
sample size separately, easily allowing for unmatched
sample sizes that are common in neuroimaging studies.
Similar to previous studies (Lipton et al., 2008; Patel et al.,
2007), aspects of the DisCo-Z method can also be utilized
for single subject data analyses.

The theoretical basis for the DisCo-Z assumes that the
samples are derived from a normal distribution, an
assumption which may be violated across different types
of neuroimaging data. However, current results indicate
that the proposed adjusted method was robust for elimi-
nating bias in several distributions (chi-square and t-distri-
butions) that deviated from normality both in terms of
skew and kurtosis. As expected, the number of positive
and negative extremes was still differentially affected by
the degree of skew and kurtosis in our simulations, such
that additional methods are needed to return a user-
defined probability of extremes (i.e., 2% of total values) for
these distributions.
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Several other key observations were also apparent from
simulations. First, the properties of the initial distribution
(normal, kurtotic, or skewed) impacted both the resulting
number of surviving extremes as well as the degree of bias.
Specifically, the magnitude of bias was inversely related to
the degree of skew (parametrically manipulated based on
the df in the chi-squared distribution) in the direction of the
skew. For example, the magnitude of bias was reduced for
positive extremes in distributions with strong positive
skew, whereas this trend was reversed in distributions with
negative skew (Figs. 4 and 5). Similarly, a greater number
of extreme voxels survived in the t-distribution relative to
the normal distribution, which is expected due to kurtosis.
Thus, it is critical that studies compare the average frequen-
cies of SSA across patients and controls rather than relying
on probability values alone based on a standard normal dis-
tribution. Second, the magnitude of bias was generally
greater for the simulated data (i.e., more significant tests)
versus real DTI data, which may have resulted from the
additional constraint for spatially contiguous voxels (i.e.,
clusters) in the DTI data. Determination of cluster size for
true false positive correction can be easily implemented
with most standard neuroimaging packages based on Gaus-
sian random field theory or Monte Carlo simulations. How-
ever, the characteristics of the SSA of interest must also be
considered, as smaller abnormalities (e.g., petechial hemor-
rhages) may be difficult to detect using standard corrective
thresholds dependent on image smoothness.

Results from several studies using z-transformation
approaches that do not correct for potential bias in SSA
have been previously reported in the neuropsychiatric lit-
erature, including two reports from our group. Specifi-
cally, we have previously reported increased FA during
the semi-acute phase of mTBI using traditional ROI analy-
ses in three independent samples of mTBI patients and
HC (Ling et al., 2012; Mayer et al., 2010, 2012). However,
the white matter tracts exhibiting evidence of increased
FA were variable across our independent adult samples,
leading us to adopt the pothole method as a potentially
more sensitive method for detecting white matter injury
(Ling et al., 2012). In contrast to our significant findings
from pothole analyses, results from the DisCo-Z method
were not indicative of significant group differences. How-
ever, consistent with our original results, the number of
clusters with increased FA was decreased during the sec-
ond visit, although the meaning of this finding is not clear
given the non-significant Time 1 between-group results.

A reanalysis of the pediatric mTBI data using the
DisCo-Z method indicated that our finding of an increased
number of clusters of increased FA in the semi-acute
injury phase remained statistically significant, and the lon-
gitudinal effects (no change) also remained the same.
However, the magnitude of these group differences was
smaller following appropriate correction with the DisCo-Z.
Therefore, current and similar results recently obtained
from another group (Watts et al., 2014) suggest that a care-
ful reconsideration of the pothole method is warranted.

In summary, spatially heterogeneous white matter inju-
ries in conjunction with strict corrections for reducing false
positives may limit the utility of traditional analytic
approaches for identifying the frequency of SSA in various
neuropsychiatric populations. Although robust approaches
for identifying SSA are needed, the statistical assumptions
of these different approaches need to be carefully eval-
uated. For example, we have shown that the pothole
method for SSA analyses introduces a systematic bias
which over-estimates the number of extremes in the com-
parison group while underestimating extremes from the
reference group. This bias can be corrected through the
use of an independent reference group or the leave-one-
out method using appropriately adjusted z-thresholds to
account for differences in sample size. Alternatively,
z-thresholds can be theoretically corrected to represent the
true probability of extremes in each distribution or boot-
strapped to estimate the variance (Kim et al., 2013). The
DisCo-Z correction is cost effective, robust and relatively
easy to implement using most statistical packages.
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