Principal Investigators //


John Phillips, MD

Medical Director
Professor of Neurology & Pediatrics

John Phillips

​Dr. Phillips is a licensed physician who, as MRN's Medical Director, has responsibility for ensuring the safety and ethical conduct of clinical and research operations.

His expertise and research are in functional neuroimaging, pediatric neurorehabilitation, cerebral palsy, spasticity management and the care of children with special needs in Eastern European orphanages.

Email Dr. Phillips

Incidental findings in neuroimaging research.

Neuroimaging provides a tremendous amount of information to the researcher. It also uncovers findings in approximately a third of all research subjects that may not be related to the original research question, but may have medical relevance for the individual. Ethical principles need to be considered when deciding how much and by what method research information is offered directly back to subjects who volunteered for the research project. Our multidisciplinary collaborative group is studying the effect of providing all research subjects with an official reading of their MRI scan, probing relationships between key ethical principles such as beneficience, subject autonomy and justice. Our goal is to contribute to the national discussion regarding incidental findings in research.

Premature Infant Development

Enormous and rapid changes in the brain occur during the neonatal period and first years of our lives, which makes the brain particularly vulnerable to physiologic stresses such as premature birth. 

In the project BRain imaging and developmental follow-up of Infants Treated with Erythropoietin (BRITE), led by Drs. Robin Ohls and John Phillips, we are investigating the impact of erythropoietin (Epo) treatment on brain development in young children who were born prematurely (with very low birth weight or VLBW). Our preliminary results on altered neurochemistry in prematurely born children is reported in JP Phillips, et al., Anterior Cingulate and Frontal Lobe White Matter Spectroscopy in Early Childhood of Former Very Low Birth Weight Premature Infants, Pediatr Res. 69(3):224-9 (2011). We observed that both NAA and total creatine are on average low in VLBW children relative to normal birth weight children, suggesting reduced neuronal function or density along with a reduced energy metabolism in VLBW children. These findings were consistent with a lower performance on cognitive tests demonstrated by the VLBW group. Our hypothesis is that follow-up studies on these children 2 years later and after treatment with Epo will reveal a normalization of these biochemical and cognitive markers towards the levels in the healthy control group.

Neuroimaging

Incidental findings in neuroimaging research. Neuroimaging provides a tremendous amount of information to the researcher. It also uncovers findings in approximately a third of all research subjects that may not be related to the original research question, but may have medical relevance for the individual. Ethical principles need to be considered when deciding how much and by what method research information is offered directly back to subjects who volunteered for the research project. Our multidisciplinary collaborative group is studying the effect of providing all research subjects with an official reading of their MRI scan, probing relationships between key ethical principles such as beneficience, subject autonomy and justice. Our goal is to contribute to the national discussion regarding incidental findings in research.

Kids, Imaging and Developmental Outcome (KIDO) Project

Some, but not all, children born after toxic exposures during pregnancy grow to have developmental and behavioral challenges. Treatment is more effective if begun early, however identifying children at greatest risk is difficult until clinical problems have begun to occur. We are beginning to study children born after in utero toxic exposures with neuroimaging and developmental assessments beginning in the first months of life in an effort to better understand the neurologic mechanisms resulting in cognitive and behavioral delay. We hope this work will lead to improved approach to early diagnosis and treatment of these children.

Brain Imaging and Developmental Follow-up of Infants Treated with Erythropoietin (BRITE) Project

This is the first study that uses neuroimaging to study the neurologic consequences of erythropoietin treatment for very premature infants. We follow three groups of children: 1) children born prematurely who were treated in the newborn intensive care unit with erythropoietin, 2) similar premature children who were not treated with erythropoietin, and 3) healthy term-born children. These children are evaluated at approximately 3 years of age and again at approximately 6 years of age with MRI scans and developmental assessments. Our goal is to determine whether early erythropoietin therapy improves developmental outcome, and secondly to characterize the neurologic mechanisms of that improvement.

Comprehensive Evaluation in the Relationships of Early Brain Response Overtime (CEREBRO) Project

This is a longitudinal study of normal brain development from 4 months of age through the preschool years. Children are followed with serial assessments including developmental tests, MRI scans and genetics. Our developmental assessments include a focus on early childhood self-regulation and executive function development. By following this cohort of children over time we hope to characterize individual differences in normal brain development, which offers an opportunity to study brain-behavioral relationships in both healthy children as well as those at risk of developmental disorders.